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Computer-Aided Analysis and Design of
Networks Containing Commensurate
and Noncommensurate Delay Lines

MOHAMED 1. SOBHY, MEMBER, IEEE, AND MAGDY H. KERIAKOS, MEMBER, IEEE

Abstract—Several computer programs are described for the analysis
and synthesis of networks containing transmission lines, lumped resistors,
voltage sources, and current sources. There are no restrictions on the
topology of the networks and degenerate elements can also be included. In
the noncommensurate case the transmission lines could have different
delays and thus the degree of freedom for each network is doubled.
State-space techniques are used to formulate the solution to the problem
and the high degree of generality was achieved by using topological
methods to derive the state equations. Several examples are given.

I. INTRODUCTION

N THIS PAPER a general approach is described for

the analysis and synthesis of networks containing com-
mensurate and noncommensurate transmission lines.
There are no restrictions on the topology; however, for
the present work we shall assume that the lines are uni-
form and nondispersive.

The networks to be considered can be generally repre-
sented as shown in Fig. 1. The sections S;--- S, contain
lumped resistors, voltage sources and current sources. The
transmission lines could be either connecting lines be-
tween the sections or degenerate lines. There are four
types of degenerate lines, these are lines terminated by a
short circuit, an ideal voltage source, an open circuit, and
an ideal current source. Mutual coupling between the
lines could exist and a solution for such circuits has been
obtained using techniques similar to those described be-
low. However, the results for networks with mutual cou-
pling will be described in a future publication.

The networks could also be classed as either normal or
nonnormal. If it is possible to label each section as either
even or odd, such that no two even sections or two odd
sections are directly connected by one or more transmis-
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M. H. Keriakos was with the Electronics Laboratories, The University
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Fig. 1. General network containing transmission lines, resistive ele-

ments, and sources.

sion lines and if all the sources are either in odd sections
or in even sections, then the network is normal. If such a
division is not possible then the network is nonnormal.
Both normal and nonnormal networks are treated in this
work.

The most general case will be a network containing
noncommensurate lines with mutual coupling between the
lines. A computer program devised to deal with these
networks will also deal with the more restricted case of
uncoupled commensurate lines. However, this approach

0018-9480/80/0400-0348$00.75 ©1980 IEEE
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will result in an unnecessary waste of computer time and
store. Furthermore, there are a number of techniques that
can only be used in the commensurate case and have no
equivalent in the noncommensurate case. For example,
the roots of the characteristic polynomial or the eigenval-
ues of the state matrix give the natural frequencies of the
commensurate network and can be readily used as the
basis of the synthesis procedure. In the noncommensurate
case the eigenvalues of the state matrix do not give the
natural frequencies of the network and the roots of the
characteristic function are infinite. Thus, it is not possible
to use either the eigenvalues or the roots as the basis of
the synthesis procedure in the noncommensurate case.
The two cases of networks containing commensurate
and noncommensurate transmission lines will be treated
separately with maximum usage of any common tech-
niques and continuous reference to any similarities.

II. THE Basic MATRICES

Topological methods were used to formulate the state
equations. In this section, we describe these methods and
define the basic matrices used to derive the equations.

A. The Forest and Coforest

Given a network containing transmission lines, we pro-
ceed to choose a forest and a coforest to describe the
topology. First degenerate current and voltage sources are
eliminated using the E-shift and I-shift theorems. This
step will not affect the four cases of degenerate transmis-
sion line terminations mentioned in Section 1.

An unconnected graph is then drawn for the network.
The edges will either be a resistive edge, a transmission
line edge, a degenerate short circuit (or voltage) edge or a
degenerate open circuit (or current) edge. These types of
edges are shown in Fig. 2. The orientation of the edges
should be such that the two edges belonging to the same
transmission line are in the same direction as shown in
Fig. 2. This is important in the case of non-normal
networks but not essential in the case of normal networks.

A forest and a coforest are then chosen for the network
such that the following conditions are satisfied:

a) the maximum number of transmission line edges are
in the coforest,

b) all the degenerate short circuit or voltage edges are
in the coforest and all the degenerate open circuit or
current edges are in the forest.

An alternative to Condition a) is that the maximum num-
ber of transmission line edges should be in the forest. This
will result in an alternative but equally useful form of the
state equations. The edges are then numbered starting
with the transmission line and degenerate edges in the
forest followed by the resistive edges in the forest, the
transmission line and degenerate edges in the coforest and
finally the resistive edges in the coforest.

B. The Dynamical Transformations Matrix

The dynamical transformations matrix D for the whole
network is obtained by assigning its rows to the branches
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Fig. 2. (a) Resistive edge. (b) Nondegenerate transmission line edge.
(¢) Degenerate short circuit or voltage edge. (d) Degenerate open
circuit or current edge. (¢) Direction of edges belonging to the same
line.

and its columns to the chords. The columns are tie sets
consisting of the assigned chord and as many branches as
necessary or alternatively the rows are cut sets consisting
of the assigned branch and as many chords as necessary.!

When the matrix D is partitioned with respect to the
transmission line and resistive chords and branches, the
edge currents and voltages are related by

i m b
iry 0 : Dyr Dpg |1
in | DRT DRR a
e == r———-—---
DTc m - D;T - DI{T I
Oge b| —D}X, DL : 0
l a eXe
o |1 [ 11
Ups | @ Ip | a
|t [ )
ir. |™M Ep ™M
ire | D Eg 1 b
T exi ex1
where
Ip= Iy~ Dyply, — Dyglp, (2a)
Ig= IRf_ Dyprlr.— Drplg, (2b)
E.=E; + DTTTETJ+ DLE Rf (2¢)
ER=ERC+D,TRETf+ DRTRERf. (2d)

ISeveral other names and symbols (F, H, C,-- - ,etc.) have been used
for this matrix, a standardization is overdue and highly desirable.
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The subscripts 7" and R refer to the transmission line
ports and the resistive elements, respectively, and the
subscripts f and ¢ refer to the forest and coforest, respec-
tively. In (1) / and m are the number of transmission line
edges in the forest and coforest, respectively; n=(/+m)/2
is the total number of transmission lines; @ and b are the
number of resistive edges in the forest and coforest
respectively; d=a+b is the total number of resistive
edges; and e=2n+d is the total number of edges. When
the maximum number of transmission line edges are in
the coforest (forest) the matrix D, =0 (Dgr=0).

C. The Characteristic Resistance Matrix

This is a matrix of the characteristic resistances of all
the transmission lines. When coupling between the lines
does not exist, the characteristic resistance matrix R, is a
diagonal matrix given by

00 -
e ——— =0y .
0 E Ro" 2nX2n

D. The Resistive Elements Matrix

®)

Similarly, all the values of the resistive elements are
entered in a diagonal matrix R

R, 0
R=|--"3---. 4
0. R,
' dxd
We also define a conductance matrix G
G=[G+DerR DL ... (5

E. The Row Operations Matrix

This matrix rearranges the rows of the state vector such
that the two rows belonging to the same transmission line
are interchanged. The row operations matrix X is ob-
tained by assigning its columns to the transmission line
edges in the order they appear in the state vector, and its
rows to the same edges with the two edges belonging to
the same transmission line interchanged. An entry of 1 is
made at the intersection of the column and row assigned
to the same edge and an entry of 0 is made otherwise. It
should be noted that the matrix K always has the property
that K=K"=K""

III. THE STATE EQUATION FOR COMMENSURATE
NETWORKS

In a commensurate network all the transmission lines
have the same delay 7. The state vector [b,(t):bc(t)]T of
transmission line networks is taken as a vector of the
reflected parameters at all the transmission line terminals.
With respect to this vector, the state equation can be
obtained [1] in terms of the basic matrices given in

Section II
Rl T AR P LR Y R
b(t+T) b.(?) Eg(1) E(1)
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where
U : —Dpr
A= R DLG D~ R, V6o
rrios 1 Prr RT 3 P
(7a)
B -3 0 ‘ 0
1=05 7 7 = 1 m i p—1
DRTTG ' "DRTTG lDRRRc ! anxd
(7b)
' -1
U = Dpp
B2=KT\/R0 vt -- et
DTTROfE DgrG ™ "Dgr+ Ry, InxX2n
(7<)

where U, is a unit matrix of order /.

An alternative form of the state equation can be ob-
tained if the maximum number of transmission line edges
are in the forest (Dgz,=0).

For the state equation to exist the inverted matrix in (7)
must be nonsingular. This condition is satisfied if the
matrices Ry, Ry, R, and G; are either positive or negative
definite. This in turn is satisfied after the application of
the E-shift and 7I-shift theorems to eliminate degenerate
voltage and current sources in the sections. Degenerate
edges that terminate transmission lines will not affect the
above condition.

It should be noted that the state equation in (6) and (7)
is basically the scattering representation of the sections
through all the transmission line ports, normalized to the
characteristic impedances of the lines. The topological
form of the matrices 4, B, and B, are similar to those of
the scattering matrix representation in the frequency
domain of networks containing lumped elements [2].

When the z-transform is applied to (6) we obtain the
state equation in the z-domain

[bf(Z) =[V2=4]""

where z=¢ 7= /IT=3 + Q.

For transmission line networks the number of eigenval-
ues, in the s-domain, of the state matrix 4 are infinite.
However, for commensurate networks the eigenvalues are
periodic with respect to wT with a period of wT'=7 and
there are 2n eigenvalues in every 2« period. This means
that the total number of eigenvalues in the z-plane is 2a
and that they occur in conjugate pairs.

IV. Tue Ourput EQuaATION

In general the output vector y(¢) will have some ele-
ments in the forest and some in the coforest. The output
equation is given by

b{(r) Ip(t
_d 2], p [ 1
b.(?)

_______ +D,
ER(?)

I(?)

g | @

Y1)



SOBHY AND KERIAKOS: NETWORKS CONTAINING COMMUNSURATE AND NONCOMMENSURATE DELAY LINES

We shall give the results for four different output vec-
tors which will cover every possible voltage or current in
the network. In every case the full output equation need
not be used, but the equations related to the desired
output can be extracted and solved. All the following
results are for D, =0 but similar results can be obtained
for Dp;=0.

A y(t)=[og(®)}ir ()]

This gives all the transmission line voltages in the forest
and all the transmission line currents in the coforest. The
matrices C, D,, and D, are given the symbols C;, D,
and D, and are given by

Cr=Dyy _2°_fo_§_ R (10a)
0 1 “2VR, 2nx2n
D D 0 ; 0
S T T xS e
~ (10b)
1 _1
Gy = Dpr
Dyr=|~ ‘T‘E ““““ 1 (10c)
Dyp i Ryt DgpG ™ "Dpr Inx2n

B. y(t)=[ir(0)ior(0)]"

This gives all the transmission line currents in the forest
and all the transmission line voltages in the coforest. The
matrices C, D,, and D, are given the symbols Cy, D,,
and D, and are given by

=D = - —— - - — e e e e m -
= Yor :
2DEVRy | 2D5EG T 'DerV Gy, arscn
(11a)
D,.=D. 0 E 0
T e o R TR
—DgrG 't ~DirG 'DpgR! 2nxd
(11b)
— []I i _DTTGOC -
Dyp=|—7—-—t—-—-==—=z-=--—~- (11c)

DirRy i U,+ DirG ~'Dp;Gy, anx2n
C. y(t)=[vre(¥)iig.()]"
This gives all the resistive element voltages in the forest

and currents in the coforest. The matrices C, D,, and D,
are given the symbols Cy, D, D,5 and are given by

Cp=MC; (122)
f -1
G — Dgp
Dp=|-24--2%| +MD,  (12b)
T
Drr i R, dxd

(12¢)
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where C, D,;, and D, are given by (10) and

(13)

D. y(t)=[irdt)0p.()]"

The matrices C, D,, and D, for this case are given the

symbols Cg, D)z, and D, and are obtained by premulti-
plying Cg, D,p, and D,, by

dxd
From (8) and (9) the transfer equation in the z-domain
can be found

yf(z) -1 R(z)
['yxz‘i [cletu=41 021 15
-1 I(2)
CERSARINS Ee

(14)

The transfer function between any chosen input and
output can then be calculated.

V. NONCOMMENSURATE NETWORKS

The topological forms of the matrices 4, B,, B,, C, D,
and D, given in Sections III and IV are valid for com-
mensurate and noncommensurate networks. In the non-
commensurate case the delays on the lines could be all
different and the time advanced state vector in (6) should
be replaced by

(o T) e bygm(t+ 0‘1+mT)]
where a, - - - a,, are the ratios between the delays on each

line and the normalized or “standard” delay 7. The
normalization could also be made with respect to any one
of the lines in the network.

It is always possible to choose the delay T such that the
ratio between the highest and the lowest a is not greater
than 2. If a line has too great a delay it is divided into two
lines. Such a choice will enable a meaningful comparison
to exist between a noncommensurate network and a com-
mensurate prototype network obtained by setting all the «
ratios to 1. The relation between the noncommensurate
network and its commensurate prototype is explained in
Section VI

To obtain the transfer equation for noncommensurate
networks the matrix [zU,, — 4] in (14) is replaced by

[ diag(z*,z%%,- - - 22"y —4]. (15)

The characteristic function is the determinant of the
matrix in (15) and the natural frequencies are the roots of
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this function. The characteristic function is no longer
rational and the number of its roots are no longer finite.
In this case each root has a different period and an overall
period cannot be defined. It is also clear that the eigenval-
ues of the state matrix 4 no longer represent the natural
frequencies.

VI. PROPERTIES OF TRANSMISSION LINE NETWORKS

In this section, we shall discuss some properties of
transmission line networks and in particular the order of
the transfer function and the degree of freedom for these
networks.

We first define the following quantities for com-
mensurate networks.

The fundamental delay T is the delay on each com-
mensurate line.

The fundamental state and output equations are the equa-
tions written with respect to the fundamental delay T5.
The matrices A, By, Cy, and Dy in these equations will
be called fundamental matrices.

The fundamental natural frequencies are the nonzero
eigenvalues of the fundamental state matrix 4.

The fundamental angular period 8y is the angle in the
z-plane where all the fundamental natural frequencies
occur.

The order of the network ng is the number of fundamen-
tal natural frequencies or the rank of the fundamental
state matrix 4.

The degree of freedom d is the number of fundamental
natural frequencies that can be simultaneously adjusted
given the set of unknown network parameters. Since the
natural frequencies are in conjugate pairs only half the
fundamental natural frequencies are independent, but
since each has a real and imaginary part the degree of
freedom is equal to the total number.

For lumped networks the order of the network is the
same as the degree of freedom which is also the order of
the state matrix or the number of finite natural frequen-
cies including those at s =0 [3]-[5]. This is consistent with
the definition of the order of the network n;, given above
since the zero natural frequencies in the z-plane are trans-
formed to 6= — o0 in the s-plane.

It is not essential to write the state equation with
respect to T, but a “commensurate” delay T could be
chosen such that 7= T,/i where i is a positive integer.
The total number of natural frequencies in the z-plane
will be ing. In this case the fundamental angular period
8.=27/i can be identified by the periodic nature of the
natural frequencies.

A. Normal Commensurate Networks

In normal commensurate networks the signals arriving
at any edge have delays which are even multiples of T the
one way delay on each commensurate line [6]. Any output
y(¢) can be expressed in terms of the input u(¢)

oo}

»()= 3 au(t—2nT)

n=0

(16)

and the fundamental delay 7 is 27.
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If the state equation is written in terms of 7 then 8,=.
If the state matrix is nonsingular then n,=n=the number
of transmission lines in the network, while the total num-
ber of natural frequencies in the z-plane is 2n. The un-
knowns are the characteristic resistances of the lines and
the degree of freedom or the number of restrictions that
can be imposed on the transfer function is .

As an example we consider a normal commensurate
network consisting of r cascaded lines and s shunt stubs
as shown in Fig. 3. When the state equation is written
with respect to the one way delay 7 on each line, there
will be 2n natural frequencies in the z-plane where n=
r+s is the total number of lines, The natural frequencies
will be symmetrical about w7'= * /2, the fundamental
period 8, is # and n;=d;=n. There are also r transmis-
sion zeros at z=0 and z=oc0 and s transmission zeros at
z=jand z=—].

One of the most common methods of designing filters
of the type described above is to use the Kuroda identities
to calculate the characteristic resistances of the cascaded
lines. In this case the state matrix 4 becomes nonsingular
and its rank is reduced by r. Since we have imposed
restrictions on the characteristic resistances the degree of
freedom is also reduced by r and we have np=d,=s. In
the z-plane 2r natural frequencies will be at z=0 and the
resulting pole-zero pattern is shown in Fig. 3.

B. Nonnormal Commensurate Networks

Networks of this type have their fundamental delay
equal to the one way delay on each line and if 4, is
nonsingular then n,=2n. An example is shown in Fig. 4.
In the z-plane no symmetry exists apart from that about
the real axis. However, since there are still only » un-
known network parameters the degree of freedom d = n.

C. Noncommensurate Networks

When the ratio of the largest « to the smallest « is less
than 2 then a noncommensurate network can be con-
sidered as a perturbation of a prototype commensurate
network obtained by setting all the « ratios to 1. The
order of the noncommensurate network will be defined as
the order of the prototype network and all the delays are
written in terms of the commensurate delay. Each natural
frequency of a noncommensurate network will have a
different period, thus in any 6, period no symmetry exists
and each fundamental natural frequency can be indepen-
dently adjusted. Since the number of unknowns are now
the line lengths as well as their characteristic resistances
then dp=2n.

Table I gives a comparison between the types of
networks discussed above, in each case the total number
of transmission lines is ».

VIL

The analysis program is based on the direct application
of (14) to calculate any transfer function. The input to the
program are the parameters /, m, a, and b and the
matrices K, D, R, and R,. Also required is a directive to

THE ANALYSIS PROGRAM
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Fig. 3.
network. (b) Pole-zero locations of networks designed by using Kuro-
da’s identities.

(a) Example of pole-zero locations in the z-plane of a normal

indicate which transfer functions are to be calculated and
the range of frequencies of interest. In the case of non-
commensurate networks, the vector a of the delay ratios is
also part of the input requirements.

The outputs from the program are the natural frequen-
cies and the zeros of transmission in the z, s, and A
domains (A\=tanh s7) for each transfer function and a
plot of the magnitude and phase of the transfer functions
with respect to w.

The program starts by forming the matrices D, D7,
Dgr, Dir, Drgs Dig, Gy, R, Ry, and Ry, where they exist.
This step is followed by forming the matrices 4, B,, B,, C,
D,, and D,. For every transfer function the vectors B and
D are formed, where

In (17) the current or voltage source for the required
transfer function is set to 1 with all the other sources.set
to 0.

The above steps are common between commensurate
and noncommensurate networks. They are followed by
the calculation of the natural frequencies, the transmission
zeros and the magnitudes and phase of the transfer func-
tions. These steps are different for the two types of
networks.

A. Commensurate Networks

The natural frequencies of commensurate networks are
calculated from the eigenvalues of the state matrix 4. The
zeros of the transfer function are obtained from
C[zU—A]"'B+ D=0. The expansion of [zZU—A4]"" is
achieved by the Faddeeva algorithm [7]. The magnitude
and phase of the transfer function C[zU — A1 'B+ D are
then calculated for the required values of frequency w.
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Fig. 4. Example of a nonnormal network.

TABLE1
THE ORDER AND THE DEGREE OF FREEDOM OF VARIOUS TYPES OF
NETWORKS CONTAINING N TRANSMISSION LINES.

g dp
Normal commensurate n
Networks designed by Kuroda identities
with r cascaded and s shunt lines s K]
Nonnormal commensurate 2n n
Normal noncommensurate n 2n
Nonnormal noncommensurate 2n 2n

B. Noncommensurate Networks

The natural frequencies for these networks are obtained
by equating the determinant of the matrix in (15) to 0.
This requires an iteration procedure for minimising the
function which in turn requires a set of initial guesses for
the location of the roots. Also, since the number of these
roots are infinite even in the z-plane the frequency limits
must be defined. The initial guesses used are the eigenval-
ues of the state matrix which is equivalent to assuming
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that the noncommensurate network is obtained by per-
turbing the commensurate network. If the perturbation in
the values of the delay ratios is high then the process
could be done in more than one step starting with the
commensurate case and introducing smaller perturbations
in the elements of the vector a.

The Faddeeva algorithm can no longer be used to
expand the inverse of (15) except to obtain the initial
guesses for the zeros by setting a;=1. When the initial
guesses are known an iterative procedure is used to solve
the equation Ch(z)+ D=0 where b(z) is the state vector
which is calculated from the state equation for every value
of z and D is given by (18).

The magnitude and phase of the transfer function
Cb(z)+ D are then calculated at all the required fre-
quencies.

VIIL

All the synthesis programs developed use an iteration
procedure to minimize a set of conditions and calculate
the set of unknown network parameters. Two main pro-
grams were developed, the first is suitable for com-
mensurate networks when the natural frequencies can be
specified and the second is a generalized program in
which specifications could be made directly on the trans-
fer function and both commensurate and noncom-
mensurate networks could be synthesized.

The iterative optimization procedure is based on the
generalized least squares method. A function f(x) of n
independent variables x is optimized to meet n conditions
such that the norm of the error vector is minimum. The
elements of the error vector are the differences between
the desired conditions and the achieved response. The
errors could be weighted if more accuracy is desired for
some of the conditions.

The conditions on the function form a set of non-linear
equations,

THE SYNTHESIS PROGRAMS

F(x)=0 (18)

An initial guess x, for the vector of the unknowns
Xy* X, is supplied to the procedure and a new vector x,
is calculated from

x= 20— [ $(x0)H(x0) + aU,] ' §"(x0) F(x)  (19)

where ¢ is the Jacobian matrix of the system of functions
F(xy) and «a is a constant which if set to zero we obtain
the Newton-Gauss method and if set to a large value we
obtain the steepest descent method.

The error vector € is given by the values of the functions
F(x). If the norm of the error vector is more than a
specified accuracy the vector x, in (19) is replaced by x,
and a new vector x, is obtained. The process is repeated
until the desired accuracy is achieved.

wherei=1,:-,n.

A. Commensurate Networks with Specified Natural
Frequencies

A large number of practical networks fall into this
category. Special attention was given to the case of
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Fig. 5. Flowchart of generalized synthesis program.

equiripple responses and a subroutine was developed to
calculate the location of the natural frequencies for an
equiripple response given the locations of the transmission
zeros. The procedure is based on making the approxima-
tion in the A-plane when the order of the filter, the ripple
factor and the cutoff frequency are known. The mathe-
matical steps for this method are well known [8] and need
not be repeated here.

From the natural frequencies the coefficient of the
characteristic polynomial are calculated and the minimisa-
tion procedure matches the actual coefficients to the re-
quired ones. The elements of the error vector are the
differences between the actual and required coefficients
and the procedure terminates when the norm of the error
vector is less than 1072,

B. The Generalized Synthesis Program

In this program a generalized set of restrictions are
specified and the corresponding set of functions are for-
mulated. A flow chart of the program is shown in Fig,. 5.

After the matrices Dyr, D7, Dry, Dar, Dgg, Dig, Gy
and R, are formed, the initial guesses for the vector a and
the matrix R, are used to calculate the matrices 4, B,, B,,
C, Dy, and D, and the initial values for the specified
restrictions. An error vector is formed and a minimisation
procedure is used to reduce the norm of the error vector
to less than 1073, The norm of the error vector gives the
sum of the squares of the differences between the desired
restrictions and the achieved response.

IX. EXAMPLES

Some examples are given below to illustrate the use of
the analysis and synthesis programs. All the programs are
written in Algol and run on an ICL 4130 machine. This is
a slow machine by present day standards and the com-
puter times given below should be judged accordingly.
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Fig. 6. (a) Response of commensurate hybrid (Example I). (b) Response of noncommensurate hybrid (Example I).
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Fig. 7. Nonredundant fifth-order Chebyshev filter with 0.5-dB ripple (Example II).

For all the synthesis examples, the solutions given corre-
spond to the norm of the error vector being less than
1078,

Example I: In this example the analysis program was
used to study the effect of that changes of the line lengths
would have on the performance of a branch hybrid
network. The commensurate case was solved first and the
response is shown in Fig. 6(a). When the line lengths are
perturbed then the noncommensurate case was analyzed
and the response is shown in Fig. 6(b). The computer
times were 2 min and 26 min, respectively.

aindB 3.85 0.5

at T

0.3 0.45

Example II: This is a synthesis problem for the fifth-
order commensurate network shown in Fig. 7. A nonre-
dundant equiripple response is required with 0.5-dB ripple
and a cutoff angle w7 of 1. First the required values of the
natural frequencies in the z-plane were obtained given

04
2.094 2304 2775 3.508 3.979 4.189 4.293 4356 4.497

that the network has three transmission zeros at +, and
at —j and two transmission zeros at 0 and at co. The
characteristic impedances of the lines were calculated and
they are given in Fig. 7 together with the network re-
sponse.

The total computer time was 5 min and the number of
iterations was 36.

Example I11: In this example ten restrictions were ap-
plied on the response of a fifth-order noncommensurate
network. The insertion loss ‘a’ was specified at 10
frequencies and the full list of restrictions was as follows:

1.8 35 10 39 412

4.618

In Fig. 8 the values of the line lengths and characteristic
impedances are given and a plot of the response is shown
with the specification points marked.

The computer time was 15 min and the number of
iterations was 15.
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Fig. 8. Realization of ten restrictions on the response of a fifth-order filter (Example III).

Example IV: In this example a noncommensurate third
order network was designed to meet the following six
conditions:

1) a zero of transmission at w7'=1.5;
2) a zero of transmission at w7'=1.6;
3) a minimum insertion loss of 50 dB in the range of
wT=1.5 and 1.6;
4) and 5) both maxima in the passband should be 0.5
dB (2 conditions);
6) the lower cutoff angle w7 is 2.2.

The results are shown in Fig. 9 and the specified restric-
tions are marked on the response curve.

The maxima were obtained by numerical differentia-
tion.

The computer time was 50 min. and the number of
iterations was 14. The long computer time in this case was
due to having to differentiate the transfer function several
times in every iteration.

X. CONCLUSIONS

The combination of topological methods and state-
space methods gives a general and powerful technique for
the analysis and synthesis of transmission line methods.
No restrictions in the topology are required and both
commensurate and noncommensurate methods can be
handled. In the developed computer programs the restric-
tions can be either specified directly on the network
response or by specifying the locations of the natural
frequencies.

The basic methods could be extended to cover a much
wider variety of problems some of which are listed below:

1) time-domain analysis and synthesis;

2) coupled transmission line networks;

3) nonuniform lines;

4) networks containing both lumped and distributed
elements;

5) parasitic effects in transmission line networks;

6) the analysis and synthesis of digital filters.
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Fig. 9. Realization of six restrictions on the response of a third-order filter (Example IV).
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