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Computer-Aided Analysis and Design of
Networks Containing Commensurate
and Noncommensurate Delay Lines

MOHAMED I. SOBHY, MEMBER, IEEE, AND MAGDY H. KERIAKOS, MEMBER, lEEE

.4bstract-Severaf computer programs are described for the analysis
and synthesisof networks containing transmission fin- lumped reaktom
voltage sour= md current sources.There are no reatrietfons on the
topology of tfre networks and degenerate elements can atsu be included. fn

the noneummensurate ease the transmission fines could have different
delays and thus the degree of freedom for each network is doubled.

State-space techniques are used tu formnfate the solution to the problem

and the high degree of generality was achieved by using topulugieaf
methuds to derive the state equations. Severaf examples are given.

I. INTRODUCTION

I N THLS PAPER a general approach is described for

the analysis and synthesis of networks containing com-

mensurate and noncornmensurate transmission lines.

There are no restrictions on the topology; however, for

the present work we shall assume that the lines are uni-

form and nondispersive.

The networks to be considered can be generally repre-

sented as shown in Fig. 1. The sections S1”. . S. contain

lumped resistors, voltage sources and current sources. The

transmission lines could be either connecting lines be-

tween the sections or degenerate lines. There are four

types of degenerate lines, these are lines terminated by a

short circuit, an ideal voltage source, an open circuit, and

an ideal current source. Mutual coupling between the

lines could exist and a solution for such circuits has been

obtained using techniques similar to those described be-

low. However, the results for networks with mutual cou-

pling will be described in a future publication.

The networks could also be classed as either normal or

nonnormal. If it is possible to label each section as either

even or odd, such that no two even sections or two odd
sections are directly connected by one or more transmis-
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Fig. 1. General network containing transmission lines, resistive ele-
ments, and sources.

sion lines and if all the sources are either in odd sections

or in even sections, then the network is normal. If such a

division is not possible then the network is nonnormal.
Both normal and nomormal networks are treated in this

work.

The most general case will be a network containing

noncommensurate lines with mutual coupling between the

lines. A computer program devised to deal with these

networks will also deal with the more restricted case of

uncoupled commensurate lines. However, this approach
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will result in an unnecessary waste of computer time and

store. Furthermore, there are a number of techniques that

can only be used in the commensurate case and have no +.:-b”’

equivalent in the noncommensurate case. For example,

the roots of the characteristic polynomial or the eigenval-

ues of the state matrix give the natural frequencies of the

commensurate network and can be readily used as the

basis of the synthesis procedure. In the noncommensurate

case the eigenvalues of the state matrix do not give the

natural frequencies of the network and the roots of the

characteristic function are infinite. Thus, it is not possible

to use either the eigenvalues or the roots as the basis of

the synthesis procedure in the noncommensurate case.

The two cases of networks containing commensurate

and noncommensurate transmission lines will be treated

separately with maximum usage of any common tech-

niques and continuous reference to any similarities.

II. THE BASIC MATRICES

Topological methods were used to formulate the state

equations. In this section, -we describe these methods and

define the basic matrices used to derive the equations.

A. The Forest and Coforest

Given a network containing transmission lines, we pro-

ceed to choose a forest and a coforest to describe the

topology. First degenerate current and voltage sources are

eliminated using the E-shift and I-shift theorems. This

step will not affect the four cases of degenerate transmis-

sion line terminations mentioned in Section I.

An unconnected graph is then drawn for the network.

The edges will either be a resistive edge, a transmission

line edge, a degenerate short circuit (or voltage) edge or a

degenerate open circuit (or current) edge. These types of

edges are shown in Fig. 2. The orientation of the edges

should be such that the two edges belonging to the same

transmission line are in the same direction as shown in

Fig. 2. This is important in the case of non-normal

networks but not essential in the case of normal networks.

A forest and a coforest are then chosen for the network

such that the following conditions are satisfied:

a) the maximum number of transmission line edges are

in the coforest,

b) all the degenerate short circuit or voltage edges are

in the coforest and all the degenerate open circuit or

current edges are in the forest.

An alternative to Condition a) is that the maximum num-

ber of transmission line edges should be in the forest. This

will result in an alternative but equally useful form of the

state equations. The edges are then numbered starting
with the transmission line and degenerate edges in the

forest followed by the resistive edges in the forest, the

transmission line and degenerate edges in the coforest and

finally the resistive edges in the coforest.

B. The Dynamical Transformations Matrix

The dynamical transformations matrix D for the whole

network is obtained by assigning its rows to the branches

I—
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Fig. 2. (a) Resistive edge. (b) Nondegenerate transmission line edge.
(c) Degenerate short circuit or voltage edge. (d) Degenerate open
circuit or current edge. (e) Direction of edges belonging to the same
line.

and its columns to the chords. The columns are tie sets

consisting of the assigned chord’ and as many branches as

necessary or alternatively the rows are cut sets consisting

of the assigned branch and as many chords as necessary. 1

When the matrix D is partitioned with respect to the

transmission line and resistive chords and branches, the

edge currents and voltages are related by

H
i=j

iRJ
.----

‘Tc
m

‘Rc b

‘Tf

‘Rf
----

i=c

iRc

exl

1

1

:+

b
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IR
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ET

ER
L

eXe

1
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m
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b

where

IT= ITJ – DmITC – DTRIRC (2a)

IR = IR~– DRrI~C – DMIRC (2b)

ET= ETC+ D&ETJ+ D&ERJ (2C)

ER = ERC+ D:RETJ+ D~RERf. (2d)

Iseveral other names md symbols (~> H, c, ..0, etc.) have been used
for this matrix, a standardization is overdue and highly desirable.
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The subscripts T and R refer to the transmission line

ports and the resistive elements, respectively, and the

subscripts ~ and c refer to the forest and coforest, respec-

tively. In (1) 1 and m are the number of transmission line

edges in the forest and coforest, respectively; n =(1+ zn)/2

is the total number of transmission lines; a and b are the

number of resistive edges in the forest and coforest

respectively; d= a + b is the total number of resistive

edges; and e= 2n + d is the total number of edges. When

the maximum number of transmission line edges are in

the coforest (forest) the matrix DT~ = O (D~T = O).

C. The Characteristic Resistance Matrix

This is a matrix of the characteristic resistances of all

the transmission lines. When coupling between the lines

does not exist, the characteristic resistance matrix RO is a

diagonal matrix given by

[11
:0

RO= -~-~-R-- = GO-1. (3)

‘c 2nX2n

D. The Resistive Elements Matrix

Similarly, all the values of the resistive elements are

entered in a diagonal matrix R

rR.: 01

We also define a conductance matrix ~

(4)

(5)

E. The Row Operations Matrix

This matrix rearranges the rows of the state vector such

that the two rows belonging to the same transmission line

are interchanged. The row operations matrix K is ob-

tained by assigning its columns to the transmission line

edges in the order they appear in the state vector, and its

rows to the same edges with the two edges belonging to

the same transmission line interchanged. An entry of 1 is

made at the intersection of the column and row assigned

to the same edge and an entry of O is made otherwise. It

should be noted that the matrix K always has the property

that K= KT=K-l.

III. THE STATE EQUATION FOR COMMENSURATE
NmwoRKs

In a commensurate network all the transmission lines

have the same delay T. The state vector [b~t): bc(t)]r of

transmission line networks is taken as a vector of the

reflected parameters at all the transmission line terminals.

With respect to this vector, the state equation can be

obtained [1] in terms of the basic matrices given in

Section II- -

[

b~(t+ T)
----------
b=(i + T)

(6)

(7a)

[

U[ ; – Dn

B2=KT~- –--+– Z---- ‘-
D&RoJ ~ D;TG - lDRT + ROC

(7b)

-1

2n X 2n

(7C)

where U, is a unit matrix of order 1.

An alternative form of the state equation can be ob-

tained if the maximum number of transmission line edges

are in the forest (DRT = O).

For the state equation to exist the inverted matrix in (7)

must be nonsingular. This condition is satisfied if the
matrices ROC,Rof, R= and Gf are either positive or negative

definite. This in turn is satisfied after the application of

the E-shift and l-shift theorems to eliminate degenerate

voltage and current sources in the sections, Degenerate

edges that terminate transmission lines will not affect the

above condition.
It should be noted that the state equation in (6) and (7)

is basically the scattering representation of the sections

through all the transmission line ports, normalized to the

characteristic impedances of the lines. The topological

form of the matrices A, B1, and B2 are similar to those of

the scattering matrix representation in the frequency

domain of networks containing lumped elements [2].

When the z-transform is applied to (6) we obtain the

state equation in the z-domain

[ 11
IT(z)

+B2 -------
ET(z)

(8)

where z = esT = e(o+J~)== ~ + j~.

For transmission line networks the number of eigenval-

ues, in the s-domain, of the state matrix A are infinite.

However, for commensurate networks the eigenvalues are

periodic with respect to UT with a period of uT= T and

there are 2n eigenvalues in every 27T period. This means

that the total number of eigenvalues in the z-plane is 2n

and that they occur in conjugate pairs.

IV. THE OUTPUT EQUATION

In general the output vector y(t)will have some ele-
ments in the forest and some in the coforest. The output

equation is given by
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We shall give the results for four different output vec-

tors which will cover every possible voltage or current in

the network, In every case the full output equation need

not be used, but the equations related to the desired

output can be extracted and solved. All the following

results are for DTR = O but similar results can be obtained

for D~~= O.

~. ~(t)= [ t@(t) ~i=.(t)]=

This gives all the transmission line voltages in the forest

and all the transmission line currents in the coforest. The

matrices C, D,, and Dz are given the symbols CT, D1 T,

and D2T and are given by

cT=D2T[’~--~k-12nx2n(lOa)

[

0;
D1T=D2T ----z -F– –--_-0-- ‘--

–D~TG–l ~ – D;TG - lDMRC- 112nxd

(lOb)

[

Gof ; – Dn

1
-1

DOT= ---, ---------- , (1OC)
D& ~ ROC+ D;T~- lD~T

2nX2n

B. y(t)= [ ‘Tf(r)jOTc(f) ]T

This gives all the transmission line currents in the forest

and all the transmission line voltages in the coforest. The——
matrices C, D,, and D2 are given the symbols CT, D 1T,

and ~2= and are given by

(ha)

[

0;E,T=EAT----:-r-–-”_-o--‘-”
–D:TG–~ : – D;TG - lDMRC- 1

12nxd

(llb)

[

U1 ; – DmGOC

I

–1

52 T= -- – - + ----- Z----- . (llC)
D&RoJ ~ U.+ D;TG - lD~TGOC

2nX2n

C. y(t)= [ q@!iRJt) ]=

This gives all the resistive element voltages in the forest

and currents in the coforest. The matrices C, D ~, and D2

are given the symbols CR, D1~, D2~ and are given by

CR= MCT (12a)

‘1R=[~3:Pl:::MD1T“2b)
D2~ = MD2T (12C)

where CT, D, T, and D2T are given by (10) and

D. ~(~)= [ ‘Rf(t)@Rc(t) ]=

The matrices C, D1, and D2 for this case are given the

symbols ~R, ~lR, and ~2R and are obtained by premuki-

plying CR, DIR, and D2R by

[1

:0% :._-=----
O f R= ~X~-

From (8) and (9) the transfer equation in the z-domain

can be found

[1Yf(z) [1IR(z)
------= [CIZU,n–A]-lB, +D1] -E-TZY

Ye(z) R

[1IT(z)
+[C[zU2n–A ]-1 B2+D2] -Z-ljj .

T

(14)

The transfer function between any chosen input and

output can then be calculated.

V. NONCOMMENSURATE NETWORKS

The topological forms of the matrices A, Bl, B2, C, D,,

and D2 given in Sections III and IV are valid for com-

mensurate and noncommensurate networks. In the non-

commensurate case the delays on the lines could be all

different and the time advanced state vector in (6) should

be replaced by

[bf,(t+a,T)...~J(t+%n;~@+l)

.(t+cY1+,T)... bc(l+m)(t+ ~/+m~)]T

where al . . “ a2. are the ratios between the delays on each

line and the normalized or “standard” delay T. The

normalization could also be made with respect to any one

of the lines in the network.

It is always possible to choose the delay T such that the

ratio between the highest and the lowest a is not greater

than 2. If a line has too great a delay it is divided into two

lines. Such a choice will enable a meaningful comparison

to exist between a noncommensurate network and a com-

mensurate prototype network obtained by setting all the a

ratios to 1. The relation between the noncommensurate

network and its commensurate prototype is explained in

Section VI.
To obtain the transfer equation for noncommensurate

networks the matrix [z U2~ – A ] in (14) is replaced by

[diag(zal,za2, ~~,Za2n)-A]. (15)

The characteristic function is the determinant of the

matrix in (15) and the natural frequencies are the roots of
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this function. The characteristic function is no longer

rational and the number of its roots are no longer finite.

In this case each root has a different period and an overall

period cannot be defined. It is also clear that the eigenval-

ues of the state matrix A no longer represent the natural

frequencies.

W. PROPERTIESOF TRANSMIMION LINE IWTWORKS

In this section, we shall discuss some properties of

transmission line networks and in particular the order of

the transfer function and the degree of freedom for these

networks,

We first define the following quantities for com-

mensurate networks.

The fundamental delay T~ is the delay on each com-

mensurate line.

The fundamental state and output equations are the equa-

tions written with respect to the fundamental delay Tr

The matrices A~, BF, C~, and D~ in these equations will

be called fundamental matrices.

The fundamental natural frequencies are the nonzero

eigenvalues of the fundamental state matrix A F.

The fundamental angular period L9~ is the angle in the

z-plane where all the fundamental natural frequencies

occur.

The order of the network n~ is the number of fundamen-

tal natural frequencies or the rank of the fundamental

state matrix AF.

The degree of freedom d~ is the number of fundamental

natural frequencies that can be simultaneously adjusted

given the set of unknown network parameters. Since the

natural frequencies are in conjugate pairs only half the

fundamental natural frequencies are independent, but

since each has a real and imaginary part the degree of

freedom is equal to the total number.

For lumped networks the order of the network is the

same as the degree of freedom which is also the order of

the state matrix or the number of finite natural frequen-

cies including those ats = O [3]–[5]. This is consistent with

the definition of the order of the network n~ given above

since the zero natural frequencies in the z-plane are trans-

formed to a= – co in the s-plane,

It is not essential to write the state equation with

respect to TF, but a “commensurate” delay T could be

chosen such that T= T~/ i where i is a positive integer.

The total number of natural frequencies in the z-plane

will be in~. In this case the fundamental angular period

8F = 2v/ i can be identified by the periodic nature of the

natural frequencies.

A. Normal Commensurate Networks

In normal commensurate networks the signals arriving

at any edge have delays which are even multiples of T the

one way delay on each commensurate line [6]. Any output

y(t) can be expressed in terms of the input u(t)

y(t)= ~ anu(t–2nT) (16)
~=o

and the fundamental delay TF is 2 T.

If the state equation is written in terms of T then 8F = r.

If the state matrix is nonsingular then n= = n = the number

of transmission lines in the network, while the total num-

ber of natural frequencies in the z-plane is 2n. The un-

knowns are the characteristic resistances of the lines and

the degree of freedom or the number of restrictions that

can be imposed on the transfer function is n.

As an example we consider a normal commensurate

network consisting of r cascaded lines and s shunt stubs

as shown in Fig. 3, When the state equation is written

with respect to the one way delay T on each line, there

will be 2n natural frequencies in the z-plane where n =

r +s is the total number of lines. The natural frequencies

will be symmetrical about aT= t 7r/2, the fundamental

period @F is n and n~ = d~ = n, There are also r transmis-

sion zeros at z = O and z = m and s transmission zeros at

z =j and z = –j.

One of the most common methods of designing filters

of the type described above is to use the Kuroda identities

to calculate the characteristic resistances of the cascaded

lines. In this case the state matrix A becomes nonsingular

and its rank is reduced by r. Since we have imposed

restrictions on the characteristic resistances the degree of

freedom is also reduced by r and we have n~ = d~ =s. In

the z-plane 2r natural frequencies will be at z = O and the

resulting pole-zero pattern is shown in Fig. 3.

B. Nonnormal Commensurate Networks

Networks of this type have their fundamental delay

equal to the one way delay on each line and if A~ is

nonsingular then n~ = 2n. An example is shown in Fig. 4.

In the z-plane no symmetry exists apart from that about

the real axis. However, since there are still only n un-

known network parameters the degree of freedom d~ = n.

C. Noncommensurate Networks

When the ratio of the largest a to the smallest a is less

than 2 then a noncommensurate network can be con-

sidered as a perturbation of a prototype commensurate

network obtained by setting all the a ratios to 1, The

order of the noncommensurate network will be defined as

the order of the prototype network and all the delays are

written in terms of the commensurate delay. Each natural

frequency of a noncommensurate network will have a

different period, thus in any 6F period no symmetry exists

and each fundamental natural frequency can be indepen-
dently adjusted. Since the number of unknowns are now

the line lengths as well as their characteristic resistances

then d~ = 2n.

Table I gives a comparison between the types of

networks discussed above, in each case the total number

of transmission lines is n.

VII. Tm ANALYSIS PROGRAM

The analysis program is based on the direct application

of (14) to calculate any transfer function. The input to the

program are the parameters 1, m, a, and b and the

matrices K, D, R, and Ro. Also required is a directive to
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Fig. 3. (a) Example of pole-zero locations in the z-plane of a norrnaf
network. (b) Pole-zero locations of networks designed by using Kuro-
da’s identities.

indicate which transfer functions are to be calculated and

the range of frequencies of interest. In the case of non-

commensurate networks, the vector a of the delay ratios is

also part of the input requirements.

The outputs from the program are the natural frequen-

cies and the zeros of transmission in the z, s, and X

domains (A= tanh sT) for each transfer function and a

plot of the magnitude and phase of the transfer functions

with respect to Q.

The program starts by forming the matrices Dn, D:,

D RT, ‘&9 ‘RR? D&, G*, RC, Rop and Rm where they exist.

l%is step is followed by forming the matrices A, Bl, B2, C,

Dl, and Dz For every transfer function the vectors B and

D are formed, where

‘=B’2[~%-landD=D’>2[-%M “7)

In (17) the current or voltage source for the required

transfer function is set to 1 with all the other sources-set

to o.

The above steps are common between commensurate

and noncommensurate networks. They are followed by

the calculation of the natural frequencies, the transmission

zeros and the magnitudes and phase of the transfer func-

tions. These steps are different for the two types of

networks.

A. Commensurate Networks

The natural frequencies of commensurate networks are

calculated from the eigenvalues of the state matrix A. The

zeros of the transfer function are obtained from

CIZU– A]-lB+D=O. The expansion of [zU– A]-l is

achieved by the Faddeeva algorithm [7]. The magnitude

and phase of the transfer function C[z U– A ]– lB + D are

then calculated for the required values of frequency W.

(Read ,,m,a,b,K,D,R I

m
L 4

I
t

1
I kiinimi.ation Proceduq

I I

aForm Rw, Rof, A, B1

Bz, C, Dl, D2, B, D

r
Do loop 1 to 2+m for
values of u’T

1 I
t

I Calculate b(z} I

*

I
Print a & R.

I

Fig. 4. Example of a nonnormal network.

TABLE I
THE ORDERAND THE DE.GRES3OFFRF.EDOMOFVARIOUS TYFESOF

NETWORKS CONTAINING N TRANSMISSION LrNss.

n= d.

Normal commensurate n n

Networks designed by Kuroda identities
with r cascaded ands shunt lines s

Nonnormal commensurate L

Normal noncomrnensurate 2:

Nomortnal nonconunensurate 2: 2n

B. Noncommensurate Networks

The natural frequencies for these networks are obtained

by equating the determinant of the matrix in (15) to O.
This requires an iteration procedure for minimizing the

function which in turn requires a set of initial guesses for

the location of the roots. Also, since the number of these

roots are infinite even in the z-plane the frequency limits

must be defined. The initial guesses used are the eigenval-

ues of the state matrix which is equivalent to assuming



354 IBEE TRANSACTIONS ON MICROWAVE THEORY ANO TSCHNIQU%S, VOL. hrrr-28, NO. 4, APRIL 1980

that the noncommensurate network is obtained by per-

turbing the commensurate network. If the perturbation in

the values of the delay ratios is high then the process

could be done in more than one step starting with the

commensurate case and introducing smaller perturbations

in the elements of the vector a.

The Faddeeva algorithm can no longer be used to

expand the inverse of (15) except to obtain the initial

guesses for the zeros by setting ai = 1, When the initial

guesses are known an iterative procedure is used to solve

the equation Cb(z) + D = O where b(z) is the state vector

which is calculated from the state equation for every value

of z and D is given by (18).

The magnitude and phase of the transfer function

Cb(z) + D are then calculated at all the required fre-

quencies.

VIII. THE SYNTHESIS PROGRAMS

All the synthesis programs developed use an iteration

procedure to minimize a set of conditions and calculate

the set of unknown network parameters. Two main pro-

grams were developed, the first is suitable for com-

mensurate networks when the natural frequencies can be

specified and the second is a generalized program in

which specifications could be made directly on the trans-

fer function and both commensurate and noncom-

mensurate networks could be synthesized.

The iterative optimization procedure is based on the

generalized least squares method. A function j(x) of n

independent variables x is optimized to meet n conditions

such that the norm of the error vector is minimum. The

elements of the error vector are the differences between

the desired conditions and the achieved response. The

errors could be weighted if more accuracy is desired for

some of the conditions.

The conditions on the function form a set of non-linear

equations,

~.(x) = o where i=l, ,.. ,n. (18)

An initial guess XO for the vector of the unknowns

x, “ “ “ x~ is supplied to the procedure and a new vector xl

is calculated from

xl= Xo– [ $~(xo)$(xo) + c-sun] - l$=(XO)F(XO) (19)

where $ is the Jacobian matrix of the system of functions

F’(xO) and a is a constant which if set to zero we obtain

the Newton-Gauss method and if set to a large value we

obtain the steepest descent method.

The error vector c is given by the values of the functions

Fi(xl). If the norm of the error vector is more than a

specified accuracy the vector XO in (19) is replaced by xl

and a new vector X2 is obtained. The process is repeated

until the desired accuracy is achieved.

A. Commensurate Networks with Specified Natural

Frequencies

A large number of practical networks fall into this

category. Special attention was given to the case of

at=
(2)

0

.*l
jfl

x

((
(2)

z

x

Fig. 5. Flowchart of generalized synthesis program.

equiripple responses and a subroutine was developed to

calculate the location of the natural frequencies for an

equiripple response given the locations of the transmission

zeros. The procedure is based on making the approxima-

tion in the &plane when the order of the filter, the ripple

factor and the cutoff frequency are known. The mathe-

matical steps for this method are well known [8] and need

not be repeated here.

From the natural frequencies the coefficient of the

characteristic polynomial are calculated and the minimisa-

tion procedure matches the actual coefficients to the re-

quired ones. The elements of the error vector are the

differences between the actual and required coefficients

and the procedure terminates when the norm of the error

vector is less than 10– 8.

B. The Generalized Synthesis Program

In this program a generalized set of restrictions are

specified and the corresponding set of functions are for-

mulated. A flow chart of the program is shown in Fig. 5.

After the matrices Dn, D;=, D~*, D;=, D~~, DA, G’,

and R= are formed, the initial guesses for the vector a and

the matrix RO are used to calculate the matrices A, B,, B2,

C, Dl, and Dz and the initial values for the specified

restrictions. An error vector is formed and a minimisation

procedure is used to reduce the norm of the error vector

to less than 10–8. The norm of the error vector gives the

sum of the squares of the differences between the desired

restrictions and the achieved response.

IX. EXAMPLES

Some examples are given below to illustrate the use of

the analysis and synthesis programs. All the programs are

written in Algol and run on an ICL 4130 machine. This is

a slow machine by present day standards and the com-

puter times given below should be judged accordingly.
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For all the synthesis examples, the solutions given corre-

spond to the norm of the error vector being less than

10-*.

Example I: In this example the analysis program was

used to study the effect of that changes of the line lengths

would have on the performance of a branch hybrid

network. The commensurate case was solved first and the

response is shown in Fig. 6(a). When the line lengths are

perturbed then the noncommensurate case was analyzed

and the response is shown in Fig. 6@). The computer

times were 2 min and 26 tin, respectively.

that the network has three transmission zeros at +j and

at –j and two transmission zeros at O and at m. The

characteristic impedances of the lines were calculated and

they are given in Fig. 7 together with the network re-

sponse.

The total computer time was 5 min and the number of

iterations was 36.

Example 111: In this example ten restrictions were ap-

plied on the response of a fifth-order noncommensurate

network. The insertion loss ‘a’ was specified at ICI

frequencies and the full list of restrictions was as follows:

a in dB 3.85 0.3 0.5 0.45 0.4 1.8 3.5 1(I 39 41.2

at COT 2.094 2.304 2.775 3.508 3.979 4.189 4.293 4.356 4.497 4.618

Example ZI: This is a synthesis problem for the fifth- In Fig. 8 the values of the line lengths and characteristic
order commensurate network shown in Fig. 7. A nonre- impedances are given and a plot of the response is shown
dundant equiripple response is required with 0.5-dB ripple with the specification points marked.

and a cutoff angle UT of 1. First the required values of the The computer time was 15 min and the number of
natural frequencies in the z-plane were obtained given iterations was 15.
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Example IV: In this example a noncommensurate third

order network was designed to meet the following six

conditions:

1) a zero of transmission at ti7’= 1.5;

2) a zero of transmission at oT= 1.6;

3) a minimum insertion loss of 50 dB in the range of

uT= 1.5 and 1.6;

4) and 5) both maxima in the passband should be 0.5

dB (2 conditions);

6) the lower cutoff angle COTis 2.2.

The results are shown in Fig. 9 and the specified restric-

tions are marked on the response curve.

The maxima were obtained by numerical differentia-

tion.

The computer time was 50 min. and the number of

iterations was 14. The long computer time in this case was

due to having to differentiate the transfer function several

times in every iteration.

X. CONCLUSIONS

The combination of topological methods and state-

space methods gives a general and powerful technique for

the analysis and synthesis of transmission line methods.

No restrictions in the topology are required and both

commensurate and noncommensurate methods can be

handled. In the developed computer programs the restric-

tions can be either specified directly on the network

response or by specifying the locations of the natural

frequencies.

The basic methods could be extended to cover a much

wider variety of problems some of which are listed below:

1) time-domain analysis and synthesis;

2) coupled transmission line networks;

3) nonuniform lines;

4) networks containing both lumped and distributed

elements;

5) parasitic effects in transmission line networks;

6) the analysis and synthesis of digital filters.



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. hmr-28, NO. 4, APR3L 1980

30 -

20 -

10 -

%2 ‘2 R2 ,,

“m
%1 al %3 “3

% ‘R2” W*

%1 = 44”8m

‘%
= 0,9S1748

%2 = 62.38S05

m2 = 1.021366

%3 = 42.84938

a3
= 1.047198

0.6

0.5

0.4

0.3

I

;

—

/ ‘1
II

,1

,1

1 3 4
UT

Fig. 9. Realization of six restrictions on the responseof a third-order filter (Example IV).

REFEMNCES
[1] M. I. Sobhy, ‘Topological derivation of the state equation of [5]

networks wntainirtg commensurate transmission lines,” Proc. Znst.
Elec. Eng., vol. 122, no. 12, pp. 1367–1371,Dec. 1975. “[6]

[2] — ‘Topological analysis of linear active networks at a number
of se~ectedports? Int. J. Electron,, vol. 40, no. 2, pp. 123–135,Feb.
1976. [7]

[3] P. R. Bryant “The order of complexity of electrical networksfl
Proc. Inst. Elec. Eng., vol. 106C, p 174, June 1959. [8]

[4] A. Bers, “The degrees of freedom in ZLLC networks; IRE Trans.

\

-

Circuit T7WOT, vol. CT-6, pp. 91–95, Mar. 1959.
P. R. Bryant “The degreesof freedom in RLC netsvorks: IRE
Trans. Circuit Theory, vol. CT-7, p 173, 1960.
L. Kittel, “New general approach to commensurate TEM transmis-
sion line networks using state-space techniques,” Znt. J. Circuit
T?leO~ APP1., vol. 1, pp. 339-361, 1971.
V. N. Faddeev& Computational Methods of Linear Algebra New
York: Dover, 1959.

D. S. Humphreys, The Ana/vsis Design and Sjmthesis of Electrical

Filters, Englewood Cfiffs, NJ: Prentice-Hall, 1970.


